(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x, xs) → member(x, xs)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0, S(y)) → False
!EQ(S(x), 0) → False
!EQ(0, 0) → True
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
member[Ite][True][Ite](True, x, xs) → True
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x, xs) → member(x, xs)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
member[Ite][True][Ite](True, x, xs) → True
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x, xs) → member(x, xs)
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
member[Ite][True][Ite](True, x, xs) → True
Types:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
member,
!EQThey will be analysed ascendingly in the following order:
!EQ < member
(6) Obligation:
Innermost TRS:
Rules:
member(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x',
x),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
x,
xs) →
member(
x,
xs)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Truemember[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
member[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
Generator Equations:
gen_S:0'4_0(0) ⇔ 0'
gen_S:0'4_0(+(x, 1)) ⇔ S(gen_S:0'4_0(x))
gen_Cons:Nil5_0(0) ⇔ Nil
gen_Cons:Nil5_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil5_0(x))
The following defined symbols remain to be analysed:
!EQ, member
They will be analysed ascendingly in the following order:
!EQ < member
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
!EQ(
gen_S:0'4_0(
n7_0),
gen_S:0'4_0(
+(
1,
n7_0))) →
False, rt ∈ Ω(0)
Induction Base:
!EQ(gen_S:0'4_0(0), gen_S:0'4_0(+(1, 0))) →RΩ(0)
False
Induction Step:
!EQ(gen_S:0'4_0(+(n7_0, 1)), gen_S:0'4_0(+(1, +(n7_0, 1)))) →RΩ(0)
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) →IH
False
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
member(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x',
x),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
x,
xs) →
member(
x,
xs)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Truemember[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
member[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
Lemmas:
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_S:0'4_0(0) ⇔ 0'
gen_S:0'4_0(+(x, 1)) ⇔ S(gen_S:0'4_0(x))
gen_Cons:Nil5_0(0) ⇔ Nil
gen_Cons:Nil5_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil5_0(x))
The following defined symbols remain to be analysed:
member
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
member(
gen_S:0'4_0(
1),
gen_Cons:Nil5_0(
n310_0)) →
False, rt ∈ Ω(1 + n310
0)
Induction Base:
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(0)) →RΩ(1)
False
Induction Step:
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(+(n310_0, 1))) →RΩ(1)
member[Ite][True][Ite](!EQ(gen_S:0'4_0(1), 0'), gen_S:0'4_0(1), Cons(0', gen_Cons:Nil5_0(n310_0))) →RΩ(0)
member[Ite][True][Ite](False, gen_S:0'4_0(1), Cons(0', gen_Cons:Nil5_0(n310_0))) →RΩ(0)
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n310_0)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
member(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x',
x),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
x,
xs) →
member(
x,
xs)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Truemember[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
member[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
Lemmas:
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n310_0)) → False, rt ∈ Ω(1 + n3100)
Generator Equations:
gen_S:0'4_0(0) ⇔ 0'
gen_S:0'4_0(+(x, 1)) ⇔ S(gen_S:0'4_0(x))
gen_Cons:Nil5_0(0) ⇔ Nil
gen_Cons:Nil5_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil5_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n310_0)) → False, rt ∈ Ω(1 + n3100)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
member(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x',
x),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
x,
xs) →
member(
x,
xs)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Truemember[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
member[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
Lemmas:
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n310_0)) → False, rt ∈ Ω(1 + n3100)
Generator Equations:
gen_S:0'4_0(0) ⇔ 0'
gen_S:0'4_0(+(x, 1)) ⇔ S(gen_S:0'4_0(x))
gen_Cons:Nil5_0(0) ⇔ Nil
gen_Cons:Nil5_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n310_0)) → False, rt ∈ Ω(1 + n3100)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
member(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x',
x),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
x,
xs) →
member(
x,
xs)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Truemember[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
member[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
member :: S:0' → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
Nil :: Cons:Nil
False :: False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: S:0' → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_S:0'2_0 :: S:0'
hole_Cons:Nil3_0 :: Cons:Nil
gen_S:0'4_0 :: Nat → S:0'
gen_Cons:Nil5_0 :: Nat → Cons:Nil
Lemmas:
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_S:0'4_0(0) ⇔ 0'
gen_S:0'4_0(+(x, 1)) ⇔ S(gen_S:0'4_0(x))
gen_Cons:Nil5_0(0) ⇔ Nil
gen_Cons:Nil5_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(1) was proven with the following lemma:
!EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) → False, rt ∈ Ω(0)
(20) BOUNDS(1, INF)